sql >> Database >  >> NoSQL >> MongoDB

Voortschrijdende gemiddelden met het aggregatieraamwerk van MongoDB?

Het agg-framework heeft nu $map en $reduce en $range ingebouwd, zodat arrayverwerking veel eenvoudiger is. Hieronder ziet u een voorbeeld van het berekenen van voortschrijdend gemiddelde op een set gegevens waar u op een predikaat wilt filteren. De basisconfiguratie is dat elk document filterbare criteria en een waarde bevat, bijvoorbeeld

{sym: "A", d: ISODate("2018-01-01"), val: 10}
{sym: "A", d: ISODate("2018-01-02"), val: 30}

Hier is het:

// This controls the number of observations in the moving average:
days = 4;

c=db.foo.aggregate([

// Filter down to what you want.  This can be anything or nothing at all.
{$match: {"sym": "S1"}}

// Ensure dates are going earliest to latest:
,{$sort: {d:1}}

// Turn docs into a single doc with a big vector of observations, e.g.
//     {sym: "A", d: d1, val: 10}
//     {sym: "A", d: d2, val: 11}
//     {sym: "A", d: d3, val: 13}
// becomes
//     {_id: "A", prx: [ {v:10,d:d1}, {v:11,d:d2},  {v:13,d:d3} ] }
//
// This will set us up to take advantage of array processing functions!
,{$group: {_id: "$sym", prx: {$push: {v:"$val",d:"$date"}} }}

// Nice additional info.  Note use of dot notation on array to get
// just scalar date at elem 0, not the object {v:val,d:date}:
,{$addFields: {numDays: days, startDate: {$arrayElemAt: [ "$prx.d", 0 ]}} }

// The Juice!  Assume we have a variable "days" which is the desired number
// of days of moving average.
// The complex expression below does this in python pseudocode:
//
// for z in range(0, size of value vector - # of days in moving avg):
//    seg = vector[n:n+days]
//    values = seg.v
//    dates = seg.d
//    for v in seg:
//        tot += v
//    avg = tot/len(seg)
// 
// Note that it is possible to overrun the segment at the end of the "walk"
// along the vector, i.e. not enough date-values.  So we only run the
// vector to (len(vector) - (days-1).
// Also, for extra info, we also add the number of days *actually* used in the
// calculation AND the as-of date which is the tail date of the segment!
//
// Again we take advantage of dot notation to turn the vector of
// object {v:val, d:date} into two vectors of simple scalars [v1,v2,...]
// and [d1,d2,...] with $prx.v and $prx.d
//
,{$addFields: {"prx": {$map: {
    input: {$range:[0,{$subtract:[{$size:"$prx"}, (days-1)]}]} ,
    as: "z",
    in: {
       avg: {$avg: {$slice: [ "$prx.v", "$$z", days ] } },
       d: {$arrayElemAt: [ "$prx.d", {$add: ["$$z", (days-1)] } ]}
        }
        }}
    }}

            ]);

Dit kan de volgende uitvoer opleveren:

{
    "_id" : "S1",
    "prx" : [
        {
            "avg" : 11.738793632512115,
            "d" : ISODate("2018-09-05T16:10:30.259Z")
        },
        {
            "avg" : 12.420766702631376,
            "d" : ISODate("2018-09-06T16:10:30.259Z")
        },
        ...

    ],
    "numDays" : 4,
    "startDate" : ISODate("2018-09-02T16:10:30.259Z")
}


  1. MongoDB $gt Aggregation Pipeline Operator

  2. Hoe de structuur van MongoDB's kaartverminderende resultaten veranderen?

  3. Bereken de gemiddelde waarde van een mongodb-document

  4. Aantal verlopen sleutels vermeld door info-opdracht op redis-slave komt niet overeen met wat ik zie