sql >> Database >  >> NoSQL >> MongoDB

Nieuwe velden (kolommen) invoegen in mongoDB met panda's

De methode die je nodig hebt is update_one() met upsert=True in een lus; je kunt insert_many() niet gebruiken om twee redenen; ten eerste breng je niet altijd in; soms ben je aan het updaten; ten tweede update_many() (en insert_many() ) werken slechts op één filter; in jouw geval is elk filter anders omdat elke update betrekking heeft op een ander tijdstip.

Dit is een generieke oplossing die dataframes combineert (df_a , df_b in dit geval - u kunt er zoveel hebben als u wilt) op de manier die u nodig heeft. Het gebruikt iterrows om elke rij van het dataframe te krijgen, filtert u op de datum en stelt u de waarden in op die in het dataframe. de $set operator overschrijft waarden als ze er al zijn en stelt ze in als ze niet zijn ingesteld. upsert=True zal een invoeging uitvoeren als er geen match is op de datum.

for df in [df_a, df_b]:
    for _, row in df.iterrows():
        db.mycollection.update_one({'date': row.get('date')}, {'$set': row.to_dict()}, upsert=True)

Volledig uitgewerkt voorbeeld:

from pymongo import MongoClient
from pprint import pprint
import datetime
import pandas as pd

# Sample data setup

db = MongoClient()['mydatabase']

data_a = [[datetime.datetime(2017, 5, 19, 21, 20), 96, 8, 98],
          [datetime.datetime(2017, 5, 19, 21, 21), 95, 8, 97],
          [datetime.datetime(2017, 5, 19, 21, 22), 95, 8, 97]]

df_a = pd.DataFrame(data_a, columns=['date', 'std_500_1000window', 'std_50_100window', 'std_50_2000window'])

data_b = [[datetime.datetime(2017, 5, 19, 21, 20), 98, 9, 10],
          [datetime.datetime(2017, 5, 19, 21, 21), 98, 9, 10],
          [datetime.datetime(2017, 5, 19, 21, 22), 98, 9, 10]]

df_b = pd.DataFrame(data_b, columns=['date', 'std_50_3000window', 'std_50_300window', 'std_50_500window'])

# Perform the upserts

for df in [df_a, df_b]:
    for _, row in df.iterrows():
        db.mycollection.update_one({'date': row.get('date')}, {'$set': row.to_dict()}, upsert=True)

# Print the results

for record in db.mycollection.find():
    pprint(record)

Resultaat:

{'_id': ObjectId('5f0ae909df5531ac655ce528'),
 'date': datetime.datetime(2017, 5, 19, 21, 20),
 'std_500_1000window': 96,
 'std_50_100window': 8,
 'std_50_2000window': 98,
 'std_50_3000window': 98,
 'std_50_300window': 9,
 'std_50_500window': 10}
{'_id': ObjectId('5f0ae909df5531ac655ce52a'),
 'date': datetime.datetime(2017, 5, 19, 21, 21),
 'std_500_1000window': 95,
 'std_50_100window': 8,
 'std_50_2000window': 97,
 'std_50_3000window': 98,
 'std_50_300window': 9,
 'std_50_500window': 10}
{'_id': ObjectId('5f0ae909df5531ac655ce52c'),
 'date': datetime.datetime(2017, 5, 19, 21, 22),
 'std_500_1000window': 95,
 'std_50_100window': 8,
 'std_50_2000window': 97,
 'std_50_3000window': 98,
 'std_50_300window': 9,
 'std_50_500window': 10}



  1. hoe stap voor stap debuggen in de kaart van mongodb/verkleinen

  2. mongodb 3.x-stuurprogramma Android-compatibiliteit

  3. MongoDB - Beperk de resultaten van een zoekopdracht

  4. mongodb aantal verschillende waarden per veld/sleutel