Er zijn een paar manieren om dit onder het aggregatieraamwerk te benaderen zonder toevlucht te nemen tot mapReduce. Recente MongoDB 2.6 en hogere versies hebben enkele operators om hier te helpen met behulp van $let
en $map
voor het definiëren van een variabele en het verwerken van de array.
Uw externe aangifte ziet er als volgt beter uit voor deze doeleinden:
var norm = [
{ "key": 1, "value": 1 },
{ "key": 2, "value": 1.16 },
{ "key": 3, "value": 1.413 },
{ "key": 4, "value": 1.622 },
{ "key": 5, "value": 1.6 },
{ "key": 6, "value": 1.753 },
{ "key": 7, "value": 3.001 },
{ "key": 8, "value": 2.818 },
{ "key": 9, "value": 3.291 },
{ "key": 10,"value": 2.824 },
{ "key": 11, "value": 2.993 },
{ "key": 12, "value": 2.699 },
{ "key": 13, "value": 1.099 },
{ "key": 14, "value": 1.035 },
{ "key": 15, "value": 1.172 },
{ "key": 16, "value": 1.013 },
{ "key": 17, "value": 0.9936 },
{ "key": 18, "value": 1.069 }
];
En verwerk vervolgens de geaggregeerde verklaring:
db.mycoll.aggregate([
{ "$match": {
"_id.day" : ISODate("2014-06-19T00:00:00.000Z"),
"_id.lt" : "l",
"_id.rt" : "rltdlsts",
"_id.m": false
}},
{ "$unwind": "$value.rl" },
{ "$match": { "value.rl.p": { "$gte": 1, "$lte": 18 } } },
{ "$project": {
"value": 1,
"norm": {
"$let": {
"vars": {
"norm": norm
},
"in": {
"$setDifference": [
{ "$map": {
"input": "$$norm",
"as": "norm",
"in": {
"$cond": [
{ "$eq": [ "$$norm.key", "$value.rl.p" ] },
"$$norm.value",
false
]
}
}},
[false]
]
}
}
}
}},
{ "$unwind": "$norm" }
{ "$group": {
"_id": "$value.rl.a",
"v": { "$sum": "$value.rl.v" },
"c": { "$sum": "$value.rl.c" },
"nv": { "$sum": { "$multiply": [ "$norm", "$value.rl.v" ] } }
}}
])
In dat $project
stadium injecteert u feitelijk de externe declaratie als een arrayvariabele in de pijplijn en verwerkt u vervolgens elk element om overeen te komen met uw bestaande "value.rl.p" -sleutels. Dit retourneert alleen de enkele overeenkomende waarde, dus het verdere gebruik van $unwind
maakt het resultaat van de array met één element eigenlijk alleen maar een unieke waarde voor gebruik in de latere $group
uitspraak.
De traditionele benadering in eerdere versies waarbij de operators niet worden ondersteund, is het gebruik van een geneste $cond
statement om elke waarde te evalueren:
db.mycoll.aggregate([
{ "$match": {
"_id.day" : ISODate("2014-06-19T00:00:00.000Z"),
"_id.lt" : "l",
"_id.rt" : "rltdlsts",
"_id.m": false
}},
{ "$unwind": "$value.rl" },
{ "$match": { "value.rl.p": { "$gte": 1, "$lte": 18 } } },
{ "$group": {
"_id": "$value.rl.a",
"v": { "$sum": "$value.rl.v" },
"c": { "$sum": "$value.rl.c" },
"nv": { "$sum": { "$multiply": [
{ "$cond": [
{ "$eq": [ "$value.rl.p", 2 },
1.16
{ "$cond": [
{ "$eq": [ "$value.rl.p", 3 },
1.413,
{ "$cond": [
{ "$eq": [ "$value.rl.p", 4 },
1.622,
{ "$cond": [
{ "$eq": [ "$value.rl.p", 5 },
1.6,
{ "$cond": [
{ "$eq": [ "$value.rl.p", 6 },
1.753,
{ "$cond": [
{ "$eq": [ "$value.rl.p", 7 },
3.001,
{ "$cond": [
{ "$eq": [ "$value.rl.p", 8 },
2.818,
{ "$cond": [
{ "$eq": [ "$value.rl.p", 9 },
3.291,
{ "$cond": [
{ "$eq": [ "$value.rl.p", 10 },
2.824,
{ "$cond": [
{ "$eq": [ "$value.rl.p", 11 },
2.993,
{ "$cond": [
{ "$eq": [ "$value.rl.p", 12 },
2.699,
{ "$cond": [
{ "$eq": [ "$value.rl.p", 13 },
1.099,
{ "$cond": [
{ "$eq": [ "$value.rl.p", 14 },
1.035,
{ "$cond": [
{ "$eq": [ "$value.rl.p", 15 },
1.172,
{ "$cond": [
{ "$eq": [ "$value.rl.p", 16 },
1.013,
{ "$cond": [
{ "$eq": [ "$value.rl.p", 17 },
0.9936,
{ "$cond": [
{ "$eq": [ "$value.rl.p", 18 },
1.069,
1
]}
]}
]}
]}
]}
]}
]}
]}
]}
]}
]}
]}
]}
]}
]}
]}
]},
"$value.rl.v"
]}}
}}
])
Het ziet er luidruchtig uit, maar het is de volgende meest efficiënte vorm na de eerder getoonde vraag. In werkelijkheid zou u de pijplijnfase op een vergelijkbare manier genereren als hier weergegeven .