Je zou een variabele kunnen gebruiken - het is veel sneller dan welke join dan ook:
SELECT
id,
size,
@total := @total + size AS cumulativeSize,
FROM table, (SELECT @total:=0) AS t;
Hier is een snelle testcase op een Pentium III met 128 MB RAM met Debian 5.0:
Maak de tabel:
DROP TABLE IF EXISTS `table1`;
CREATE TABLE `table1` (
`id` int(11) NOT NULL auto_increment,
`size` int(11) NOT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB;
Vul met 20.000 willekeurige getallen:
DELIMITER //
DROP PROCEDURE IF EXISTS autofill//
CREATE PROCEDURE autofill()
BEGIN
DECLARE i INT DEFAULT 0;
WHILE i < 20000 DO
INSERT INTO table1 (size) VALUES (FLOOR((RAND() * 1000)));
SET i = i + 1;
END WHILE;
END;
//
DELIMITER ;
CALL autofill();
Controleer het aantal rijen:
SELECT COUNT(*) FROM table1;
+----------+
| COUNT(*) |
+----------+
| 20000 |
+----------+
Voer de cumulatieve totaalquery uit:
SELECT
id,
size,
@total := @total + size AS cumulativeSize
FROM table1, (SELECT @total:=0) AS t;
+-------+------+----------------+
| id | size | cumulativeSize |
+-------+------+----------------+
| 1 | 226 | 226 |
| 2 | 869 | 1095 |
| 3 | 668 | 1763 |
| 4 | 733 | 2496 |
...
| 19997 | 966 | 10004741 |
| 19998 | 522 | 10005263 |
| 19999 | 713 | 10005976 |
| 20000 | 0 | 10005976 |
+-------+------+----------------+
20000 rows in set (0.07 sec)
UPDATE
Ik had de groepering op groupId in de oorspronkelijke vraag gemist, en dat maakte de zaken zeker wat lastiger. Ik schreef toen een oplossing die een tijdelijke tabel gebruikte, maar ik vond het niet leuk - het was rommelig en te ingewikkeld. Ik ging weg en deed wat meer onderzoek en heb iets veel eenvoudiger en snellers bedacht.
Ik kan hier niet alle eer voor opeisen - sterker nog, ik kan er nauwelijks aanspraak op maken, omdat het slechts een aangepaste versie is van Emuleer rijnummer van Algemene MySQL-query's .
Het is prachtig eenvoudig, elegant en erg snel:
SELECT fileInfoId, groupId, name, size, cumulativeSize
FROM (
SELECT
fileInfoId,
groupId,
name,
size,
@cs := IF(@prev_groupId = groupId, @cs+size, size) AS cumulativeSize,
@prev_groupId := groupId AS prev_groupId
FROM fileInfo, (SELECT @prev_groupId:=0, @cs:=0) AS vars
ORDER BY groupId
) AS tmp;
U kunt de buitenste SELECT ... AS tmp
. verwijderen als je het niet erg vindt de prev_groupID
kolom wordt geretourneerd. Ik ontdekte dat het iets sneller liep zonder.
Hier is een eenvoudige testcase:
INSERT INTO `fileInfo` VALUES
( 1, 3, 'name0', '10'),
( 5, 3, 'name1', '10'),
( 7, 3, 'name2', '10'),
( 8, 1, 'name3', '10'),
( 9, 1, 'name4', '10'),
(10, 2, 'name5', '10'),
(12, 4, 'name6', '10'),
(20, 4, 'name7', '10'),
(21, 4, 'name8', '10'),
(25, 5, 'name9', '10');
SELECT fileInfoId, groupId, name, size, cumulativeSize
FROM (
SELECT
fileInfoId,
groupId,
name,
size,
@cs := IF(@prev_groupId = groupId, @cs+size, size) AS cumulativeSize,
@prev_groupId := groupId AS prev_groupId
FROM fileInfo, (SELECT @prev_groupId := 0, @cs := 0) AS vars
ORDER BY groupId
) AS tmp;
+------------+---------+-------+------+----------------+
| fileInfoId | groupId | name | size | cumulativeSize |
+------------+---------+-------+------+----------------+
| 8 | 1 | name3 | 10 | 10 |
| 9 | 1 | name4 | 10 | 20 |
| 10 | 2 | name5 | 10 | 10 |
| 1 | 3 | name0 | 10 | 10 |
| 5 | 3 | name1 | 10 | 20 |
| 7 | 3 | name2 | 10 | 30 |
| 12 | 4 | name6 | 10 | 10 |
| 20 | 4 | name7 | 10 | 20 |
| 21 | 4 | name8 | 10 | 30 |
| 25 | 5 | name9 | 10 | 10 |
+------------+---------+-------+------+----------------+
Hier is een voorbeeld van de laatste paar rijen uit een tabel met 20.000 rijen:
| 19481 | 248 | 8CSLJX22RCO | 1037469 | 51270389 |
| 19486 | 248 | 1IYGJ1UVCQE | 937150 | 52207539 |
| 19817 | 248 | 3FBU3EUSE1G | 616614 | 52824153 |
| 19871 | 248 | 4N19QB7PYT | 153031 | 52977184 |
| 132 | 249 | 3NP9UGMTRTD | 828073 | 828073 |
| 275 | 249 | 86RJM39K72K | 860323 | 1688396 |
| 802 | 249 | 16Z9XADLBFI | 623030 | 2311426 |
...
| 19661 | 249 | ADZXKQUI0O3 | 837213 | 39856277 |
| 19870 | 249 | 9AVRTI3QK6I | 331342 | 40187619 |
| 19972 | 249 | 1MTAEE3LLEM | 1027714 | 41215333 |
+------------+---------+-------------+---------+----------------+
20000 rows in set (0.31 sec)