sql >> Database >  >> RDS >> Sqlserver

Ik krijg nog steeds een rekenkundige overloop wanneer ik filter op een cast datetime, zelfs als ik IsDate() gebruik

DateTime van SQL Server heeft het domein 1753-01-01 00:00:00.000 ≤ x ≤ 9999-12-31 23:59:59,997. Het jaar 210 CE valt buiten dat domein. Vandaar het probleem.

Als u SQL Server 2008 of later gebruikte, zou u het kunnen casten naar een DateTime2 datatype en je zou gouden zijn (het domein is 0001-01-01 00:00:00.0000000 &le x ≤ 9999-12-31 23:59:59,999999. Maar met SQL Server 2005 ben je vrijwel SOL.

Dit is echt een probleem van het opschonen van gegevens. Mijn neiging in gevallen als deze is om de gegevens van derden in een verzameltabel te laden met elk veld als tekenreeksen. Reinig vervolgens de gegevens op hun plaats en vervang bijvoorbeeld ongeldige datums door NULL. Eenmaal gereinigd, voer dan het nodige conversiewerk uit om het naar zijn eindbestemming te verplaatsen.

Een andere benadering is om patroonherkenning te gebruiken en de datum te filteren zonder iets te converteren naar datetime . ISO 8601 datum/tijd-waarden zijn tekenreeksen die de prijzenswaardige eigenschap hebben dat ze (A) door mensen leesbaar zijn en (B) goed kunnen worden verzameld en vergeleken.

Wat ik in het verleden heb gedaan, is wat analytisch werk om alle patronen in het datetime-veld te identificeren door decimale cijfers te vervangen door een 'd' en vervolgens group by uit te voeren. om de tellingen van elk verschillend gevonden patroon te berekenen. Als je dat eenmaal hebt, kun je een aantal patroontabellen maken om je te begeleiden. Zoiets als deze:

create table #datePattern
(
  pattern varchar(64) not null primary key clustered ,
  monPos  int         not null ,
  monLen  int         not null ,
  dayPos  int         not null ,
  dayLen  int         not null ,
  yearPos int         not null ,
  yearLen int         not null ,
)

insert #datePattern values ( '[0-9]/[0-9]/[0-9] %'                          ,1,1,3,1,5,1)
insert #datePattern values ( '[0-9]/[0-9]/[0-9][0-9] %'                     ,1,1,3,1,5,2)
insert #datePattern values ( '[0-9]/[0-9]/[0-9][0-9][0-9] %'                ,1,1,3,1,5,3)
insert #datePattern values ( '[0-9]/[0-9]/[0-9][0-9][0-9][0-9] %'           ,1,1,3,1,5,4)
insert #datePattern values ( '[0-9]/[0-9][0-9]/[0-9] %'                     ,1,1,3,2,6,1)
insert #datePattern values ( '[0-9]/[0-9][0-9]/[0-9][0-9] %'                ,1,1,3,2,6,2)
insert #datePattern values ( '[0-9]/[0-9][0-9]/[0-9][0-9][0-9] %'           ,1,1,3,2,6,3)
insert #datePattern values ( '[0-9]/[0-9][0-9]/[0-9][0-9][0-9][0-9] %'      ,1,1,3,2,6,4)
insert #datePattern values ( '[0-9][0-9]/[0-9]/[0-9] %'                     ,1,2,4,1,6,1)
insert #datePattern values ( '[0-9][0-9]/[0-9]/[0-9][0-9] %'                ,1,2,4,1,6,2)
insert #datePattern values ( '[0-9][0-9]/[0-9]/[0-9][0-9][0-9] %'           ,1,2,4,1,6,3)
insert #datePattern values ( '[0-9][0-9]/[0-9]/[0-9][0-9][0-9][0-9] %'      ,1,2,4,1,6,4)
insert #datePattern values ( '[0-9][0-9]/[0-9][0-9]/[0-9] %'                ,1,2,4,2,7,1)
insert #datePattern values ( '[0-9][0-9]/[0-9][0-9]/[0-9][0-9] %'           ,1,2,4,2,7,2)
insert #datePattern values ( '[0-9][0-9]/[0-9][0-9]/[0-9][0-9][0-9] %'      ,1,2,4,2,7,3)
insert #datePattern values ( '[0-9][0-9]/[0-9][0-9]/[0-9][0-9][0-9][0-9] %' ,1,2,4,2,7,4)

create table #timePattern
(
  pattern varchar(64) not null primary key clustered ,
  hhPos int not null ,
  hhLen int not null ,
  mmPos int not null ,
  mmLen int not null ,
  ssPos int not null ,
  ssLen int not null ,
)
insert #timePattern values ( '[0-9]:[0-9]:[0-9]'                ,1,1,3,1,5,1 )
insert #timePattern values ( '[0-9]:[0-9]:[0-9][0-9]'           ,1,1,3,1,5,2 )
insert #timePattern values ( '[0-9]:[0-9][0-9]:[0-9]'           ,1,1,3,2,6,1 )
insert #timePattern values ( '[0-9]:[0-9][0-9]:[0-9][0-9]'      ,1,1,3,2,6,2 )
insert #timePattern values ( '[0-9][0-9]:[0-9]:[0-9]'           ,1,2,4,1,6,1 )
insert #timePattern values ( '[0-9][0-9]:[0-9]:[0-9][0-9]'      ,1,2,4,1,6,2 )
insert #timePattern values ( '[0-9][0-9]:[0-9][0-9]:[0-9]'      ,1,2,4,2,7,1 )
insert #timePattern values ( '[0-9][0-9]:[0-9][0-9]:[0-9][0-9]' ,1,2,4,2,7,2 )

Je zou deze twee tabellen in 1 kunnen combineren, maar het aantal combinaties heeft de neiging om dingen te exploderen, hoewel het de zoekopdracht dan enorm vereenvoudigt.

Als je dat eenmaal hebt, is de zoekopdracht [redelijk] eenvoudig, aangezien SQL niet bepaald 's werelds beste taalkeuze is voor stringverwerking:

---------------------------------------------------------------------
-- first, get your lower bound in ISO 8601 format yyyy-mm-dd hh:mm:ss
-- This will compare/collate properly
---------------------------------------------------------------------
declare @dtLowerBound varchar(255)
set @dtLowerBound = convert(varchar,dateadd(year,-1,current_timestamp),121)

-----------------------------------------------------------------
-- select rows with a start date more recent than the lower bound
-----------------------------------------------------------------
select isoDate =       + right( '0000' + substring( t.startDate , coalesce(dt.yearPos,1) , coalesce(dt.YearLen,0) ) , 4 )
                 + '-' + right(   '00' + substring( t.startDate , coalesce(dt.monPos,1)  , coalesce(dt.MonLen,0)  ) , 2 )
                 + '-' + right(   '00' + substring( t.startDate , coalesce(dt.dayPos,1)  , coalesce(dt.dayLen,0)  ) , 2 )
                 + case
                   when tm.pattern is not null then
                       ' ' + right( '00' + substring(ltrim(rtrim( substring(t.startDate,dt.YearPos+dt.YearLen,1+len(t.startDate)-(dt.YearPos+dt.YearLen) ) ) ), tm.hhPos , tm.hhLen ) , 2 )
                     + ':' + right( '00' + substring(ltrim(rtrim( substring(t.startDate,dt.YearPos+dt.YearLen,1+len(t.startDate)-(dt.YearPos+dt.YearLen) ) ) ), tm.mmPos , tm.mmLen ) , 2 )
                     + ':' + right( '00' + substring(ltrim(rtrim( substring(t.startDate,dt.YearPos+dt.YearLen,1+len(t.startDate)-(dt.YearPos+dt.YearLen) ) ) ), tm.ssPos , tm.ssLen ) , 2 )
                   else ''
                   end
,*
from someTableWithBadData t
left join #datePattern dt on t.startDate like dt.pattern
left join #timePattern tm on ltrim(rtrim( substring(t.startDate,dt.YearPos+dt.YearLen,1+len(t.startDate)-(dt.YearPos+dt.YearLen) ) ) )
                             like tm.pattern
where @lowBound <=        + right( '0000' + substring( t.startDate , coalesce(dt.yearPos,1) , coalesce(dt.YearLen,0) ) , 4 )
                 + '-' + right(   '00' + substring( t.startDate , coalesce(dt.monPos,1)  , coalesce(dt.MonLen,0)  ) , 2 )
                 + '-' + right(   '00' + substring( t.startDate , coalesce(dt.dayPos,1)  , coalesce(dt.dayLen,0)  ) , 2 )
                 + case
                   when tm.pattern is not null then
                       ' ' + right( '00' + substring(ltrim(rtrim( substring(t.startDate,dt.YearPos+dt.YearLen,1+len(t.startDate)-(dt.YearPos+dt.YearLen) ) ) ), tm.hhPos , tm.hhLen ) , 2 )
                     + ':' + right( '00' + substring(ltrim(rtrim( substring(t.startDate,dt.YearPos+dt.YearLen,1+len(t.startDate)-(dt.YearPos+dt.YearLen) ) ) ), tm.mmPos , tm.mmLen ) , 2 )
                     + ':' + right( '00' + substring(ltrim(rtrim( substring(t.startDate,dt.YearPos+dt.YearLen,1+len(t.startDate)-(dt.YearPos+dt.YearLen) ) ) ), tm.ssPos , tm.ssLen ) , 2 )
                   else ''
                   end

Zoals ik al zei, SQL is niet de beste keuze voor het verminken van strings.

Dit zou je ... 90% daar moeten krijgen. De ervaring leert me dat je nog steeds meer slechte datums zult vinden:maanden minder dan 1 of groter dan 12, dagen minder dan 1 of meer dan 31, of dagen buiten bereik voor die maand (er gaat niets boven 31 februari om de computer te laten zeuren) , enz. Vooral oude cobol-programma's gebruikten graag een veld van alle 9's om ontbrekende gegevens aan te geven, bijvoorbeeld (hoewel dat een gemakkelijk geval is om mee om te gaan).

Mijn voorkeurstechniek is om een ​​perl-script te schrijven om de gegevens te scrubben en deze in bulk in SQL Server te laden, met behulp van de BCP-faciliteiten van perl. Dat is precies het soort probleemruimte waarvoor perl is ontworpen.




  1. Spark SQL 2.0:NullPointerException met een geldige PostgreSQL-query

  2. Waarom retourneert Oracle een specifieke reeks als 'orderby'-waarden identiek zijn?

  3. Update meerdere tabellen in een enkele query in mysql

  4. Hoe kan ik aangrenzende rijen selecteren op een willekeurige rij (in sql of postgresql)?