sql >> Database >  >> NoSQL >> MongoDB

Hoe kan ik de afwikkelingsfasen in de aggregatiepijplijn voor geneste documenten verminderen?

Zolang uw gegevens unieke sensor- en tag-uitlezingen per document hebben, die tot op heden lijken op wat u heeft gepresenteerd, heeft u eenvoudigweg geen $unwind helemaal niet.

In feite is alles wat je echt nodig hebt een enkele $group :

db.endpoints.aggregate([
  // In reality you would $match to limit the selection of documents
  { "$match": { 
    "DateTime": { "$gte": new Date("2018-05-01"), "$lt": new Date("2018-06-01") }
  }},
  { "$group": {
    "_id": "$EndpointId",
    "FirstActivity" : { "$min" : "$DateTime" },
    "LastActivity" : { "$max" : "$DateTime" },
    "RequestCount": { "$sum": 1 },
    "TagCount": {
      "$sum": {
        "$size": { "$setUnion": ["$Tags.Uid",[]] }
      }
    },
    "SensorCount": {
      "$sum": {
        "$sum": {
          "$map": {
            "input": { "$setUnion": ["$Tags.Uid",[]] },
            "as": "tag",
            "in": {
              "$size": {
                "$reduce": {
                  "input": {
                    "$filter": {
                      "input": {
                        "$map": {
                          "input": "$Tags",
                          "in": {
                            "Uid": "$$this.Uid",
                            "Type": "$$this.Sensors.Type"
                          }
                        }
                      },
                      "cond": { "$eq": [ "$$this.Uid", "$$tag" ] }
                    }
                  },
                  "initialValue": [],
                  "in": { "$setUnion": [ "$$value", "$$this.Type" ] }
                }
              }
            }
          }
        }
      }
    }
  }}
])

Of als je die "unieke" waarden van "Sensors" en "Tags" uit verschillende documenten moet verzamelen, dan heb je nog steeds de initiële $unwind uitspraken om de juiste groepering te krijgen, maar lang niet zo veel als je nu hebt:

db.endpoints.aggregate([
  // In reality you would $match to limit the selection of documents
  { "$match": { 
    "DateTime": { "$gte": new Date("2018-05-01"), "$lt": new Date("2018-06-01") }
  }},
  { "$unwind": "$Tags" },
  { "$unwind": "$Tags.Sensors" },
  { "$group": {
    "_id": {
      "EndpointId": "$EndpointId",
      "Uid": "$Tags.Uid",
      "Type": "$Tags.Sensors.Type"
    },
    "FirstActivity": { "$min": "$DateTime" },
    "LastActivity": { "$max": "$DateTime" },
    "RequestCount": { "$addToSet": "$_id" }
  }},
  { "$group": {
    "_id": {
      "EndpointId": "$_id.EndpointId",
      "Uid": "$_id.Uid",
    },
    "FirstActivity": { "$min": "$FirstActivity" },
    "LastActivity": { "$max": "$LastActivity" },
    "count": { "$sum": 1 },
    "RequestCount": { "$addToSet": "$RequestCount" }
  }},
  { "$group": {
    "_id": "$_id.EndpointId",
    "FirstActivity": { "$min": "$FirstActivity" },
    "LastActivity": { "$max": "$LastActivity" },
    "TagCount": { "$sum": 1 },
    "SensorCount": { "$sum": "$count" },
    "RequestCount": { "$addToSet": "$RequestCount" }
  }},
  { "$addFields": {
    "RequestCount": {
      "$size": {
        "$reduce": {
          "input": {
            "$reduce": {
              "input": "$RequestCount",
              "initialValue": [],
              "in": { "$setUnion": [ "$$value", "$$this" ] }
            }
          },
          "initialValue": [],
          "in": { "$setUnion": [ "$$value", "$$this" ] }
        }
      }
    }
  }}
],{ "allowDiskUse": true })

En vanaf MongoDB 4.0 kun je $toString gebruiken op de ObjectId binnen _id en voeg eenvoudig de unieke sleutels daarvoor samen om de RequestCount . te behouden met behulp van $mergeObjects . Dit is schoner en een beetje meer schaalbaar dan geneste array-inhoud pushen en afvlakken

db.endpoints.aggregate([
  // In reality you would $match to limit the selection of documents
  { "$match": { 
    "DateTime": { "$gte": new Date("2018-05-01"), "$lt": new Date("2018-06-01") }
  }},
  { "$unwind": "$Tags" },
  { "$unwind": "$Tags.Sensors" },
  { "$group": {
    "_id": {
      "EndpointId": "$EndpointId",
      "Uid": "$Tags.Uid",
      "Type": "$Tags.Sensors.Type"
    },
    "FirstActivity": { "$min": "$DateTime" },
    "LastActivity": { "$max": "$DateTime" },
    "RequestCount": {
      "$mergeObjects": {
        "$arrayToObject": [[{ "k": { "$toString": "$_id" }, "v": 1 }]]
      }
    }
  }},
  { "$group": {
    "_id": {
      "EndpointId": "$_id.EndpointId",
      "Uid": "$_id.Uid",
    },
    "FirstActivity": { "$min": "$FirstActivity" },
    "LastActivity": { "$max": "$LastActivity" },
    "count": { "$sum": 1 },
    "RequestCount": { "$mergeObjects": "$RequestCount" }
  }},
  { "$group": {
    "_id": "$_id.EndpointId",
    "FirstActivity": { "$min": "$FirstActivity" },
    "LastActivity": { "$max": "$LastActivity" },
    "TagCount": { "$sum": 1 },
    "SensorCount": { "$sum": "$count" },
    "RequestCount": { "$mergeObjects": "$RequestCount" }
  }},
  { "$addFields": {
    "RequestCount": {
      "$size": {
        "$objectToArray": "$RequestCount"
      }
    }
  }}
],{ "allowDiskUse": true })

Beide vormen retourneren dezelfde gegevens, hoewel de volgorde van de sleutels in het resultaat kan variëren:

{
        "_id" : "89799bcc-e86f-4c8a-b340-8b5ed53caf83",
        "FirstActivity" : ISODate("2018-05-06T19:05:02.666Z"),
        "LastActivity" : ISODate("2018-05-06T19:05:02.666Z"),
        "RequestCount" : 2,
        "TagCount" : 4,
        "SensorCount" : 16
}

Het resultaat wordt verkregen uit deze voorbeelddocumenten die u oorspronkelijk als voorbeeldbron gaf in de oorspronkelijke vraag over het onderwerp :

{
    "_id" : ObjectId("5aef51dfaf42ea1b70d0c4db"),    
    "EndpointId" : "89799bcc-e86f-4c8a-b340-8b5ed53caf83",    
    "DateTime" : ISODate("2018-05-06T19:05:02.666Z"),
    "Url" : "test",
    "Tags" : [ 
        {
            "Uid" : "C1:3D:CA:D4:45:11",
            "Type" : 1,
            "DateTime" : ISODate("2018-05-06T19:05:02.666Z"),
            "Sensors" : [ 
                {
                    "Type" : 1,
                    "Value" : NumberDecimal("-95")
                }, 
                {
                    "Type" : 2,
                    "Value" : NumberDecimal("-59")
                }, 
                {
                    "Type" : 3,
                    "Value" : NumberDecimal("11.029802536740132")
                }, 
                {
                    "Type" : 4,
                    "Value" : NumberDecimal("27.25")
                }, 
                {
                    "Type" : 6,
                    "Value" : NumberDecimal("2924")
                }
            ]
        },         
        {
            "Uid" : "C1:3D:CA:D4:45:11",
            "Type" : 1,
            "DateTime" : ISODate("2018-05-06T19:05:02.666Z"),
            "Sensors" : [ 
                {
                    "Type" : 1,
                    "Value" : NumberDecimal("-95")
                }, 
                {
                    "Type" : 2,
                    "Value" : NumberDecimal("-59")
                }, 
                {
                    "Type" : 3,
                    "Value" : NumberDecimal("11.413037961112279")
                }, 
                {
                    "Type" : 4,
                    "Value" : NumberDecimal("27.25")
                }, 
                {
                    "Type" : 6,
                    "Value" : NumberDecimal("2924")
                }
            ]
        },          
        {
            "Uid" : "E5:FA:2A:35:AF:DD",
            "Type" : 1,
            "DateTime" : ISODate("2018-05-06T19:05:02.666Z"),
            "Sensors" : [ 
                {
                    "Type" : 1,
                    "Value" : NumberDecimal("-97")
                }, 
                {
                    "Type" : 2,
                    "Value" : NumberDecimal("-58")
                }, 
                {
                    "Type" : 3,
                    "Value" : NumberDecimal("10.171658037099185")
                }
            ]
        }
    ]
}

/* 2 */
{
    "_id" : ObjectId("5aef51e0af42ea1b70d0c4dc"),    
    "EndpointId" : "89799bcc-e86f-4c8a-b340-8b5ed53caf83",    
    "Url" : "test",
    "Tags" : [ 
        {
            "Uid" : "E2:02:00:18:DA:40",
            "Type" : 1,
            "DateTime" : ISODate("2018-05-06T19:05:04.574Z"),
            "Sensors" : [ 
                {
                    "Type" : 1,
                    "Value" : NumberDecimal("-98")
                }, 
                {
                    "Type" : 2,
                    "Value" : NumberDecimal("-65")
                }, 
                {
                    "Type" : 3,
                    "Value" : NumberDecimal("7.845424441900629")
                }, 
                {
                    "Type" : 4,
                    "Value" : NumberDecimal("0.0")
                }, 
                {
                    "Type" : 6,
                    "Value" : NumberDecimal("3012")
                }
            ]
        }, 
        {
            "Uid" : "12:3B:6A:1A:B7:F9",
            "Type" : 1,
            "DateTime" : ISODate("2018-05-06T19:05:04.574Z"),
            "Sensors" : [ 
                {
                    "Type" : 1,
                    "Value" : NumberDecimal("-95")
                }, 
                {
                    "Type" : 2,
                    "Value" : NumberDecimal("-59")
                }, 
                {
                    "Type" : 3,
                    "Value" : NumberDecimal("12.939770381907275")
                }
            ]
        }
    ]
}

Waar het op neerkomt, is dat u ofwel het eerste formulier hier kunt gebruiken dat "binnen elk document" en vervolgens "per eindpunt" binnen een enkele fase wordt verzameld en het meest optimaal is, of dat u dingen zoals de "Uid" op de tags of de "Type" op de sensor waar deze waarden meer dan eens voorkomen over een combinatie van documenten, gegroepeerd op het eindpunt.

Uw voorbeeldgegevens die tot nu toe zijn verstrekt, laten alleen zien dat deze waarden "uniek zijn binnen elk document", daarom zou de eerste vorm het meest optimaal zijn als dit het geval is voor alle resterende gegevens.

In het geval dat dit niet het geval is, is het "afwikkelen" van de twee geneste arrays om "de details over documenten te aggregeren" de enige manier om dit te benaderen. U kunt het datumbereik of andere criteria beperken, aangezien de meeste "query's" doorgaans bepaalde grenzen hebben en niet echt werken op de "hele" verzamelingsgegevens, maar het belangrijkste feit blijft dat arrays worden "afgewikkeld", waardoor in wezen een documentkopie wordt gemaakt voor elke arraylid.

Het punt over optimalisatie betekent dat u dit slechts "twee keer" hoeft te doen, aangezien er slechts twee arrays zijn. Opeenvolgende $group doen naar $unwind naar $group is altijd een zeker teken dat je iets echt verkeerd doet. Als je eenmaal 'iets uit elkaar hebt gehaald', hoef je het maar één keer . In een reeks gegradeerde stappen, zoals hier wordt gedemonstreerd, is de eens aanpak die optimaliseert.

Buiten het bestek van uw vraag blijft:

  • Voeg andere realistische beperkingen toe aan de zoekopdracht om het aantal verwerkte documenten te verminderen, misschien zelfs in "batches" en combineer de resultaten
  • Voeg de allowDiskUse . toe optie aan de pijpleiding om tijdelijke opslag te laten gebruiken. (eigenlijk gedemonstreerd op de commando's)
  • Bedenk dat 'geneste arrays' waarschijnlijk niet de beste opslagmethode zijn voor de analyse die u wilt doen. Het is altijd efficiënter als je weet dat je moet $unwind om de gegevens in die "afgewikkelde" vorm gewoon direct in een verzameling te schrijven.


  1. Hoe Redis Cache implementeren met Django Rest Framework?

  2. Subdocumenten ophalen die overeenkomen met de maximale waarde in de array

  3. Gebruik globaal een JsonConverter voor een klasse zonder het attribuut

  4. Waarden toevoegen aan een array in MongoDB met Java